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1 Bregman distances of probability measures

The concept of Bregman distances for Euclidean space vectors was introduced by Bregman
(1967) in the context of convex programming. In this setup, the Bregman method has
been widely applied and adapted, especially for the design of regularization algorithms
for �nding a good approximate solution of inverse problems e.g. in image processing
(tomography etc.), see for instance Censor and Lent (1981), Eggermont (1993), Byrne
(1999), Resmerita (2005), Silva Neto and Cella (2006), Resmerita and Scherzer (2007),
Resmerita and Anderssen (2007), Xu and Osher (2007), Burger et al. (2008), Cai et al.
(2008), Marquina and Osher (2008), Osher et al. (2008), Scherzer et al. (2008), and the
references therein. Bregman distances for non-negative functions were treated in Csiszár
(1995). In the context of information theory and statistical decision theory, Bregman
distances were studied e.g. by Csiszár (1991, 1994) as well as Pardo and Vajda (1997,
2003) basically for discrete probability measures or related functional quantities; closely
related contexts are also applied in machine learning, see e.g. in La¤erty et al. (1997),
Kivinen and Warmuth (1999), La¤erty (1999), Collins et al. (2001), Della Pietra et al.
(2002), Murata et al. (2004), as well as in Cesa-Bianchi and Lugosi (2006). Applications
to statistical physics are e.g. given in Topsoe (2007).

1Corresponding author. E-mail:stummer@mi.uni-erlangen.de
2Supported by the M�MT grant 1M0572 and the GA µCR grant 102/07/1131.
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In this paper, we study Bregman distances of general probability measures, in particular
of the laws belonging to an exponential family. As a by-product, we retrieve some of the
results of Azoury and Warmuth (2001) as a special case. Our setup contrasts with the
studies in Banerjee et al. (2005) which pointwise represent the densities of exponential
family distributions in terms of Bregman distances of Euclidean vectors.

1.1 Divergences of probability measures and �nite measures

As a preparation for the below exact de�nition of the Bregman distances, and for the
derivation of some of their basic properties, we �rst introduce some notations and discuss
some relevant issues on the ��divergences of measures and probability measures. De-
noting by P respectively M the space of all probability respectively �nite measures on
a measurable space (X ;A), throughout this paper we shall always consider P1; P2; 2 P1
and Q 2 M, all three of them mutually measure-theoretically equivalent and dominated
by a �-�nite measure � on (X ;A). Then the densities

pi =
dPi
d�
; i = 1; 2 and q =

dQ

d�

may be assumed as strictly positive on X . Furthermore, let � : (0;1) 7! R be a continu-
ous convex function. It is known that then the possibly in�nite extension �(0) = limt#0 �(t)
and the right-hand derivatives �0+(t) for t 2 [0;1) exist, and that the adjoint function

��(t) = t�(1=t) (1)

is continuous and convex on (0;1) with possibly in�nite extension ��(0). We shall assume
that �(1) � ��(1) = 0:

For every P 2 fP1; P2g we consider the �-divergence

D�(P;Q) =

Z
X
q �

�
p

q

�
d�; with p =

dP

d�
; (2)

which does not depend on the choice of the dominating measure � (see e.g. Liese and
Vajda (1987)). It is useful to take into account that for s 2 (0;1) one gets the bounds

�(s) + �0+(s)(t� s) � �(t) � �(0) + t��(0); for all t 2 (0;1): (3)

The left-hand side is the well-known support line of �(t) at t = s: The right-hand in-
equality is trivial if �(0) =1, and in the opposite case it follows by taking s!1 in the
inequality

�(t) � �(0) + t
�(s)� �(0)

s
;

which is an easy consequence of the Jensen inequality between �(t) and the extremal
values �(0); �(s) (with 0 < t < s). By taking the special case s = 1 and t = p=q in (3)
and multiplying both sides by q; we end up at

�0+(1)(p� q) � q �

�
p

q

�
� q �(0) + p ��(0):
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Integrating this inequality, we get the �-divergence bounds

�0+(1)(1�Q(X )) � D�(P;Q) � Q(X )�(0) + ��(0) (4)

which can be used e.g. to check the �niteness of D�(P;Q) (playing a role for several
representation results below).

Notice that D�(P;Q) might be negative. For probability measures P1; P2 the bounds
(4) take on the form

0 � D�(P1; P2) � �(0) + ��(0) ; (5)

and the equalities are achieved under well-known conditions (cf. Liese and Vajda (1987),
(2006)): the left equality holds if P1 = P2, and the right one holds if P1 ? P2 (singularity).
Moreover, if �(t) is strictly convex at t = 1; the �rst if can be replaced by i¤ , and in the
case �(0) + ��(0) <1 also the second if can be replaced by i¤ .

An alternative to the left-hand inequality in (4), which extends the left-hand inequality
in (5) including the conditions for the equality, is given by the following theorem.

Theorem 1. For every P 2 P, Q 2M one gets the lower divergence bound

Q(X )�
�

1

Q(X )

�
� D�(P;Q) ; (6)

where the equality holds if
p =

q

Q(X ) P -a.s. (7)

If D�(P;Q) < 1 and �(t) is strictly convex at t = 1=Q(X ); the equality in (6) holds if
and only if (7) holds.

Proof. By (2) and the de�nition (1) of the convex function ���;

D�(P;Q) =

Z
X
��
�
q

p

�
dP:

Hence by Jensen�s inequality

D�(P;Q) � ��
�Z

X

q

p
dP

�
= ��(Q(X )) (8)

which proves the desired inequality (6). Since

q

p
= Q(X ) P -a. s.

is the condition for equality in (8), the rest is clear from the easily veri�able fact that
��(t) is strictly convex at t = s if and only if �(t) is strictly convex at t = 1=s. �
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For some of the representation investigations below, it will also be useful to take into
account that for probability measures P1; P2 we get directly from de�nition (2) the �skew
symmetry��-divergence formula

D��(P1; P2) = D�(P2; P1) ; (9)

as well as the su¢ ciency of the condition

�(t)� ��(t) � constant � (t� 1) (10)

for the �-divergence symmetry

D�(P1; P2) = D�(P2; P1) for all P1; P2 : (11)

Liese and Vajda (1987) proved that if �(t) is strictly convex at t = 1, then condition (10)
is is not only su¢ cient but also necessary for the symmetry (11).

1.2 General Bregman distance

In the following, we present the basic concept of the current paper, which is a measure-
theoretic version of the Bregman distance for Euclidean space vectors introduced into the
literature by Bregman (1967).

De�nition 1. The Bregman distance of probability measures P1; P2 2 P relative a �nite
measure Q 2M is de�ned by the formula

B� (P1; P2 jQ) =

Z
X

�
�

�
p1
q

�
� �

�
p2
q

�
� �0+

�
p2
q

��
p1
q
� p2
q

��
dQ (12)

=

Z
X

�
q�

�
p1
q

�
� q�

�
p2
q

�
� �0+

�
p2
q

�
(p1 � p2)

�
d�: (13)

Remark. By putting t = p1=q and s = p2=q in (3) we �nd the argument of the integral
in (12) to be nonnegative. Hence the Bregman distance B� (P1; P2 jQ) is well-de�ned by
(12) or (13) and is always nonnegative (possibly in�nite).

The de�nition (12), (13) was formally given in Stummer (2007) within the context of
probability measures, which for the case of di¤erentiable, strictly convex �scaling function�
� can also be deduced from the context of Bregman divergences for nonnegative functions
(rather than measures) in Csiszár (1995); see also Gao et al. (2004) for a �nancial version
concerning equivalent martingale measures under some integrability restrictions. As it
will be shown in Subsection 1.5 below, the Bregman distance B� (P1; P2 jQ) generally
does depend on the choice of the reference measure Q respectively � (in contrast to the
��divergence D�(P;Q)). For X � R (resp. Rd), the following special choices of the
reference measure Q have already been used in literature:

(a) X is �nite or countable and Q = � is the counting measure on X (which is in general
���nite rather than �nite which was assumed above). Then, for discrete probability
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measures P1 and P2 supported on X the densities are pi(x) = Pi(fxg) > 0 on X and the
Bregman distance reduces to

B�(P1; P2 jjQ) =
X
x2X

�
�(p1(x))� �(p2(x))� �0+(p2(x)) (p1(x)� p2(x))

�
: (14)

For �nite X , this special case coincides with the Bregman divergence de�nition of Csiszár
(1991), (1994), and for countable X with that used by Pardo and Vajda (1997), (2003).
Closely related de�nitions and results in the context of machine learning can be found
e.g. in La¤erty et al. (1997), Kivinen and Warmuth (1999), La¤erty (1999), Collins et
al. (2001), Della Pietra et al. (2002), Murata et al. (2004), as well as in Cesa-Bianchi
and Lugosi (2006). For some special cases in the �eld of inverse problems, see e.g. Byrne
(1999) as well as Silva Neto and Cella (2006).

(b) For open X and Lebesgue measure Q = � (which is of course again ���nite rather
than �nite), p1 and p2 are classical Lebesgue densities. In this case, for some particular
choices of � the Bregman distance B� (P1; P2 jQ) coincides with Bregman distances used
for the design of regularization techniques for inverse problems (see e.g. Jones and Trutzer
(1989), Jones and Byrne (1990), as well as Resmerita and Anderssen (2007)).

By using the remark after De�nition 1 and applying (2) we get

D�(P1; Q) � D�(P2; Q) +

Z
X
�0+

�
p2
q

�
(p1 � p2)d� (15)

if at least one of the right-hand side expressions is �nite. Similarly,

B� (P1; P2 jQ) = D�(P1; Q)�D�(P2; Q)�
Z
X
�0+

�
p2
q

�
d� (16)

if at least two of the right-hand side expressions are �nite (which can be checked e.g. by
using (4) or (6))

The formula (12) simpli�es in the important special cases Q = P1 and Q = P2. In the
former, due to �(1) = 0 it reduces to

B� (P1; P2 jP1) =

Z
X

�
�0+

�
p2
p1

�
(p2 � p1)� p1�

�
p2
p1

��
d� (17)

=

Z
X
�0+

�
p2
p1

�
(p2 � p1)d��D�(P2; P1) ; (18)

where the di¤erence (18) is meaningful if and only if if D�(P2; P1) � D��(P1; P2) is �nite.
The nonnegative divergence measure B� (P1; P2) := B� (P1; P2 jP1) is thus the di¤erence
between the nonnegative divergence measure

D� (P2; P1) =
Z
X
�0+

�
p2
p1

�
(p2 � p1)d� � D�(P2; P1)

and the nonnegative ��divergence D�(P2; P1).
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The other special case Q = P2 is simpler, leading to

B� (P1; P2 jP2) = D�(P1; P2) (19)

without any restriction on P1; P2 2 P (cf. the informal formula (1) in Stummer (2007)).
This shows that our concept of Bregman distance strictly generalizes the concept of
��divergence.

In the following we discuss some important special cases with respect to the �scaling
function��.

1.3 Bregman logarithmic distance

Let us consider the special function �(t) = t ln t. Then �0(t) = ln t+1 so that (12) implies

Bt ln t (P1; P2 jQ) =

Z
X

�
p1 ln

p1
q
� p2 ln

p2
q
�
�
ln
p2
q
+ 1

�
(p1 � p2)

�
d�

=

Z
X

�
p1 ln

p1
q
� p1 ln

p2
q

�
d�

=

Z
X
p1 ln

p1
p2
d� = Dt ln t (P1; P2) : (20)

Thus, for �(t) = t ln t the Bregman distance B� (P1; P2 jQ) does not depend on the choice
of the reference measure Q resp. �; in fact, it always leads to the Kulllback-Leibler infor-
mation divergence (relative entropy) Dt ln t(P1; P2), see Stummer (2007).

1.4 Bregman reversed logarithmic distance

Let now �(t) = � ln t so that �0(t) = �1=t. Then (12) implies

B� ln t (P1; P2 jQ) =

Z
X

�
q ln

q

p1
� q ln q

p2
+
q

p2
(p1 � p2)

�
d� (21)

= Dt ln t(Q;P1)�Dt ln t(Q;P2) +

Z
X

qp1
p2
d��Q(X ) (22)

= D� ln t(P1; Q)�D� ln t(P2; Q) +

Z
X

qp1
p2
d��Q(X ) (23)

where the equalities (22) and (23) hold if at least two out of the �rst three expressions on
the right-hand side are �nite. In particular, (21) implies (in consistency with (19))

B� ln t (P1; P2 jP2) = D� ln t(P1; P2) (24)

and (22) implies for Dt ln t(P1; P2) <1 (in consistency with (18))

B� ln t (P1; P2 jP1) = �2(P1; P2)�Dt ln t(P1; P2) (25)

where

�2(P1; P2) =

Z
X

(p1 � p2)2
p2

d�

is the well-known Pearson information divergence. From (24) and (25) one can also see
that the Bregman distance B� (P1; P2 jQ) does in general depend on the choice of the
reference measure Q.
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1.5 Bregman power distances

In this subsection we restrict ourselves for simplicity to probability measures Q 2 P, i.e.
we suppose Q(X ) = 1. Under this assumption we investigate the Bregman distances

B� (P1; P2 jQ) = B�� (P1; P2 jQ) ; � 2 R; � 6= 0; � 6= 1 (26)

for the family of power convex functions

�(t) � ��(t) =
t� � 1
�(�� 1) with �0�(t) =

t��1

�� 1 : (27)

For comparison and representation purposes, we use for P 2 fP1; P2g the power diver-
gences

D�(P;Q) = D��(P;Q) =
1

�(�� 1)

�Z
X
p� q1�� d�� 1

�
(28)

=
exp ��(P;Q)� 1

�(�� 1) ; with ��(P;Q) = ln
Z
X
p� q1�� d� (29)

of real powers � di¤erent from 0 and 1, studied for arbitrary probability measures P;Q
in Liese and Vajda (1987). They are one-one related to the Rényi divergences

R�(P;Q) =
��(P;Q)

�(�� 1) ; � 2 R; � 6= 0; � 6= 1:

introduced in Liese and Vajda (1987) as an extension of the original narrower class of the
divergences

R�(P;Q) =
��(P;Q)

�� 1 ; � > 0; � 6= 1

of Rényi (1961).

Returning now to the Bregman power distances, observe that ifD�(P1; Q)+D�(P2; Q) is
�nite then (16), (26) and (27) imply for � 6= 0; � 6= 1

B�(P1; P2 jQ) = �D�(P2; Q)�
1

�� 1

Z
X

�
p2
q

���1
(p1 � p2) d� (30)

= D�(P1; Q)�D�(P2; Q)�
1

�� 1

Z
X

"�
p2
q

���1
p1 �

�
p2
q

��
q

#
d� (31)

= D�(P1; Q)� (1��)D�(P2; Q)�
1

��1

"Z
X

�
p2
q

���1
p1 d�� 1

#
: (32)

In particular, we get from here (in consistency with (19))

B�(P1; P2 jP2) = D�(P1; P2) (33)

and in case of D�(P2; P1) � D1��(P1; P2) <1 also

B�(P1; P2 jP1) = (�� 2)D��1(P2; P1) + (�� 1)D�(P2; P1) (34)

� (�� 2)D2��(P1; P2) + (�� 1)D1��(P1; P2): (35)

7



In the following theorem, and elsewhere in the sequel, we use the simpli�ed notation

D1(P;Q) = Dt ln t(P;Q) and D0(P;Q) = D� ln t(P;Q) (36)

for the probability measures P;Q under consideration (and also later on where Q is only
a �nite measure). This step is motivated by the limit relations

lim
�#0
D�(P;Q) = D� ln t(P;Q) and lim

�"1
D�(P;Q) = Dt ln t(P;Q) (37)

proved as Proposition 2.9 in Liese and Vajda (1987) for arbitrary probability measures
P;Q. Applying these relations to the Bregman distances, we obtain

Theorem 2. If D0(P1; Q) +D0(P2; Q) <1 then

lim
�#0
B�(P1; P2 jQ) = D0(P1; Q)�D0(P2; Q) +

Z
X

qp1
p2
d�� 1 (38)

� B� ln t(P1; P2 jQ): (39)

If D1(P1; Q) +D1(P2; Q) <1 and

lim
�#0

Z
X

(p2=q)
�� � 1
�

dP1 =

Z
X
lim
�#0

(p2=q)
�� � 1
�

dP1 (40)

= �
Z
X
ln
p2
q
dP1

then

lim
�"1
B�(P1; P2 jQ) = D1(P1; Q)�

Z
X
ln
p2
q
dP1 (41)

= D1(P1; P2) = Bt ln t(P1; P2 jQ) : (42)

Proof. If 0 < � < 1 then D�(P1; Q); D�(P2; Q) are �nite so that (32) holds. Applying
the �rst relation of (37) in (32) we get (38) where the right hand side is well de�ned
because D�(P1; Q) + D�(P2; Q) is by assumption �nite. Simlarly, by using the second
relation of (37) and the assumption (40) in (32) we end up at (41) where the right-hand
side is well de�ned because D1(P1; Q)+D1(P2; Q) is assumed to be �nite. The identity
(39) follows from (38), (23) and the identity (42) from (41), (20). �

Motivated by the above Theorem 2, we introduce for all probability measures P1; P2; Q
under consideration the simpli�ed notations

B1(P1; P2 jQ) = Bt ln t(P1; P2 jQ) (43)

and
B0(P1; P2 jQ) = B� ln t(P1; P2 jQ) ; (44)

and thus, (42) and (39) become

B1(P1; P2 jQ) = lim
�"1
B�(P1; P2 jQ) (45)
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and

B0(P1; P2 jQ) = lim
�#0
B�(P1; P2 jQ): (46)

Furthermore, in these notations the relations (20), (24) and (25) reformulate (under the
corresponding assumptions) as follows

B1(P1; P2 jQ) = D1(P1; P2) ; (47)

B0(P1; P2 jP2) = D0(P1; P2) (48)

and

B0(P1; P2 jP1) = �2(P1; P2)�D1(P1; P2)

= 2D2(P1; P2)�D1(P1; P2) : (49)

2 Bregman power distances in exponential families

In this section we show that the Bregman power distances can be explicitly evaluated for
P1; P2; Q from exponential families. Let � be a �nite measure on (X ;A) = (Rd;Bd), and
let y � � denote the scalar product of the Euclidean vectors y; � 2 Rd. The extended real
valued function

b(�) = ln

Z
Rd
ex��d�(x); � 2 Rd ; (50)

and the parameter space
� = f� 2 Rd : b(�) <1g (51)

de�ne on (Rd;Bd) an exponential family of probability measures fP� : � 2 �g with the
densities

p�(x) �
dP�
d�
(x) = ex���b(�); x 2 Rd; � 2 �: (52)

The function b(�) is convex on Rd; the parameter space � is a convex subset of Rd
containing 0 2 Rd; and the function b(�) is in�nitely di¤erentiable in the interior �� of �
with the gradient

5b(�0) = ((@=@�1; :::; @=@�r) � b(�))�=�0 , �0 2 ��: (53)

The formula Z
Rd
ex�� d�(x) = eb(�); � 2 � (54)

useful in the sequel follows from (52) and impliesZ
Rd
x ex�� d�(x) = eb(�)rb(�); �0 2 ��: (55)

We are interested in the Bregman power distances

B� (P�1 ; P�2 jP�0) for �0; �1; �2 2 �; � 2 R: (56)
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Here P�1 ; P�2 ; P�0 are measure-theoretically equivalent probability measures, so that we
can turn attention to the formulas (32), (20), (23), and (43) to (46), promising to mainly
reduce the evaluation of B�(P�1 ; P�2 jP�0) to the evaluation of the power divergences
D�(P�1 ; P�2). Therefore we �rst study these divergences and in particular verify their
�niteness, which was a su¢ cient condition for applicability of the formulas (32), (20) and
(23).

Theorem 3. If � 2 R di¤ers from 0 and 1, then for arbitrary �1; �2 2 � one gets the
representation formula

D� (P�1 ; P�2) =
exp

�
b(��1 + (1� �) �2)� �b(�1)� (1� �) b(�2)

	
� 1

�(�� 1) : (57)

Consequently D� (P�1 ; P�2) is �nite for all 0 < � < 1.

Proof. As a slight extension of (29), put for arbitrary � 2 R and �1; �2 2 �

��(�1; �2) = ln

Z
Rd
p��1p

1��
�2

d� (58)

= ln

Z
Rd
exp

n
�[x � �1 � b(�1)] + (1� �) [x � �2 � b(�2)]

o
d�(x)

= ln

R
Rd e

x�[��1+(1��) �2] d�(x)

e�b(�1)+(1��) b(�2)

= ln
eb(��1+(1��) �2)

e�b(�1)+(1��) b(�2)
(cf. (54)):

Hence
��(�1; �2) = b

�
��1 + (1� �) �2

�
� �b(�1)� (1� �) b(�2) ; (59)

where the right hand side is �nite if 0 � � � 1. Furthermore, (29) implies for � 2 Rnf0; 1g

D� (P�1 ; P�2) =
exp ��(�1; �2)� 1

�(�� 1) (60)

Thus, (57) follows from (59) and (60). The declared �nitness of D� (P�1 ; P�2) is immedi-
ately clear. �

The remaining power divergences D0(P�1 ; P�2) and D1(P�1 ; P�2) are evaluated in the next
theorem.

Theorem 4. For all �1; �2 2 � and � 2 R di¤erent from 0 and 1

D� (P�2 ; P�1) = D1�� (P�1 ; P�2) (61)

and for �2 2 ��

D� ln t (P�1 ; P�2) = D0 (P�1 ; P�2) = lim
�#0
D� (P�1 ; P�2) (62)

= b(�1)� b(�2)�rb(�2) (�1 � �2) (63)

= lim
�"1
D� (P�2 ; P�1) = D1 (P�2 ; P�1) = Dt ln t (P�2 ; P�1) (64)
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Proof. (I) Let �(�� 1) 6= 0 and �1; �2 2 �. By (1) and (27)

���(t) =
t1�� � t
�(�� 1) :

Hence, from the de�nitions (2) and (28) one can see that D���(P�2 ; P�1) coincides with the
power divergence D1��(P�2 ; P�1). Therefore (61) follows from the relations

D1�� (P�2 ; P�1) � D��� (P�2 ; P�1)

= D�� (P�1 ; P�2) � D� (P�1 ; P�2) (cf. (9)):

Alternatively, (61) follows from (60) using the skew symmetry

��(�1; �2) = �1��(�2; �1)

which is evident from (59).

(II) The equalities (62) and (64) follow from the already proved skew symmetry (61)
and from the de�nition of the �-divergences of orders � = 0 and � = 1 in (37), (36). It
remains to prove that the limit in (62) equals (63). For this, let us �rst observe that for
every real valued function �(�) de�ned in the open set (�"; ")nf0g (" > 0) it holds

lim
�!0

e�(�) � 1
�(�� 1) = � lim

�!0

�(�)

�

in the sense that one of the limits exists if and only if the other does so, and then the two
are equal. With the help of (60), for �(�) = ��(�1; �2) this is the equivalent to

lim
�!0

D� (P�1 ; P�2)

�(�� 1) = � lim
�!0

��(�1; �2)

�
;

and the proof is completed by the easy veri�cation of the relation

� lim
�!0

��(�1; �2)

�
� lim

�!0

� b(�1) + (1� �) b(�2)� b(� �1 + (1� �) �2)
�

(cf. (59))

= b(�1)� b(�2) +rb(�2) (�2 � �1):

for �2 from the interior ��. �

The main result of this section is the following representation theorem for Bregman
distances in exponential families, where in addition to the functions ��(�1; �2) of (59) we
also use the functions ��(�0; �1; �2) (� 2 R, �0; �1; �2 2 �) de�ned by the formula

��(�0; �1; �2) = �
I
�(�0; �1; �2)� �II� (�0; �1; �2) (65)

with the nonnegative (possibly in�nite)

�I�(�0; �1; �2) = b
�
� �1 + (1� �) [�1 � �2 + �0]

�
(66)

and with the �nite

�II� (�0; �1; �2) = � b(�1) + (1� �)
h
b(�1)� b(�2) + b(�0)

i
: (67)
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Theorem 5. Let �0; �1; �2 2 � be arbitrary. If �(��1) 6= 0 then the Bregman distance
of the exponential family distributions P�1 and P�2 relative to P�0 is given by the formula

B� (P�1 ; P�2 jP�0) =
exp ��(�1; �0)

�(�� 1) +
exp ��(�2; �0)

�
+
exp��(�0; �1; �2)

1� � : (68)

If �0 respectively �1 is from the interior ��, then the limiting Bregman power distances
are

B0 (P�1 ; P�2 jP�0) = b(�1)� b(�2)�rb(�0) (�1 � �2) + exp�0(�0; �1; �2)� 1 (69)

respectively
B1 (P�1 ; P�2 jP�0) = b(�2)� b(�1)�rb(�1) (�2 � �1) : (70)

Proof. (I) By (52) it holds for every � 2 R and �0; �1; �2 2 ��
p�2(x)

p�0(x)

���1
p�1(x)

= exp
n
(�� 1)

�
x � (�2 � �0)� (b(�2)� b(�0))

�
+ x � �1 � b(�1)

o
= exp

n
x �
�
� �1 + (1� �) [�1 � �2 + �0]

�
� �II� (�0; �1; �2)

o
with �II� (�0; �1; �2) from (67). Since (54) leads toZ

Rd
exp

n
x �
�
� �1 + (1� �) [�1 � �2 + �0]

�o
d� = exp�I�(�0; �1; �2)

for �I�(�0; �1; �2) given by (66), it holdsZ
X

�
p�2
p�0

���1
p�1 d� = exp��(�0; �1; �2) (71)

where ��(�0; �1; �2) was de�ned in (65). Now, by taking in (32) the exponential family
distributions

P1 = P�1 ; P2 = P�2 ; Q = P�0 (cf. (52)),

we get for �(�� 1) 6= 0 the Bregman distances

B� (P�1 ; P�2 jP�0) = D� (P�1 ; P�2)� (1� �)D� (P�2 ; P�0) (72)

+
1

1� �

"Z
X

�
p�2
p�0

���1
p�1 d�� 1

#
:

Applying the power divergence formula (60) together with (71) to (72), one obtains the
desired formula (68).

(II) By the representation of B0(P1; P2 jQ) in (46) and by (38)

B0 (P�1 ; P�2 jP�0) = D0 (P�1 ; P�0)�D0 (P�2 ; P�0) +

Z
X

p�0p�1
p�2

d�� 1
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where Z
X

p�0 p�1
p�2

d� = exp�0(�0; �1; �2) (cf. (71)).

For �0 2 �� the desired assertion (69) follows from here and from the formulas

D0 (P�i ; P�0) = b(�i)� b(�0)�rb(�0) (�i � �0) for i = 1; 2

obtained from (63).

(III) The desired formula (70) follows immediately from (45), (41), (42), (63) and (64).
�

Remarks. (i) Since �1, �2 lie in the convex subset � of Rd and the function b(�) is
convex as well as di¤erentiable in ��, formula (70) suggests that B1 (P�1 ; P�2 jP�0) can be
interpreted as the original classical de�nition of a Bregman distance (with respect to the
scaling function b) on the multidimensional Euclidean space. But this also means that
the formulas (69) and (68) give direct alternatives for classical Bregman distances where
(68) tends to the classical de�nition as � tends to 1.
(ii) We see from Theorems 4 and 5 that �in consistency with (20), (42) �for arbitrary
interior parameters �0; �1; �2 2 ��

B1 (P�1 ; P�2 jP�0) = D1 (P�1 ; P�2) ;

i. e. that the Bregman distance of order � = 1 of exponential family distributions P�1 ; P�2
does not depend on the �background distribution� P�0 . The distance of order � = 0
satis�es the relation

B0 (P�1 ; P�2 jP�0) = D0 (P�1 ; P�2) + exp�0(�0; �1; �2)� 1
= B1 (P�2 ; P�1 jP�0) + �(�0; �1; �2) ;

where
�(�0; �1; �2) = exp�0(�0; �1; �2)� 1

represents a deviation from the skew-symmetry of the Bregman distancesB0 (P�1 ; P�2 jP�0)
and B1 (P�2 ; P�1 jP�0) of P�1 and P�2 . This deviation is zero if (for strictly convex b(�) if
and only if ) �0 = �2.
(iii) From the formulas (57), (58), (63), (65), (66), (67), (68), (69) and (70) one can see
immediately that for all � 2 R the quantities D� (P�1 ; P�2), ��(�1; �2), ��(�0; �1; �2) and
B� (P�1 ; P�2 jP�0) only depend on the function b(�) de�ned in (50), and not directly on
the reference measure � used in the de�nition formulas (50), (52).
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